Math 304 (Spring 2015) - Homework 4

Please note that this homework has two pages. There are 5 problems in total.

Problem 1.

Determine whether the following sets are subspaces of \mathbb{R}^{2}. Explain why!
(1) $\left\{\left.\binom{x_{1}}{x_{2}} \right\rvert\, x_{1}+x_{2}=0\right\}$
(2) $\left\{\left.\binom{x_{1}}{x_{2}} \right\rvert\, x_{1} x_{2}=0\right\}$
(3) $\left\{\left.\binom{x_{1}}{x_{2}} \right\rvert\, x_{1}+x_{2}=1\right\}$
(4) $\left\{\left.\binom{x_{1}}{x_{2}} \right\rvert\, x_{1}^{2}+x_{2}^{2}=1\right\}$

Problem 2.

Let us denote by $M_{2 \times 2}(\mathbb{R})$ the set of all (2×2) matrices whose entries are all real numbers. In the textbook, $M_{2 \times 2}(\mathbb{R})$ is also denoted by $\mathbb{R}^{2 \times 2}$. We know that $M_{2 \times 2}(\mathbb{R})$ is a vector space. Now determine whether the following sets are subspaces of $M_{2 \times 2}(\mathbb{R})$. Explain why!
(1) The set of all (2×2) upper triangular matrices.
(2) The set of all (2×2) nonsingular matrices.
(3) The set of all (2×2) symmetric matrices.
(4) The set of all (2×2) matrices with determinant equal to 1 .

Problem 3.

(a) Let \mathbb{P}_{3} be the vector space of all polynomials with degree less than or equal to 3 . Determine whether the following sets are subspaces of \mathbb{P}_{3}.
(1) The set of all polynomials $p(x)$ in \mathbb{P}_{3} such that $p(0)=0$.
(2) The set of all polynomials $p(x)$ in \mathbb{P}_{3} such that $p(0)=1$.
(b) Let $C[-\pi, \pi]$ be the vector space of all continuous functions on the closed interval $[-\pi, \pi]$. Determine whether the following sets are subspaces of $C[-\pi, \pi]$.
(1) The set of all odd functions in $C[-\pi, \pi]$.
(2) The set of functions $f(x)$ in $C[-\pi, \pi]$ such that $f(-\pi)=f(\pi)$.

Problem 4.

Determine whether the following vectors form a spanning set of \mathbb{R}^{3}.

$$
\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
1 \\
4 \\
3
\end{array}\right)
$$

Problem 5.

Find the null space of the matrix

$$
A=\left(\begin{array}{cccc}
1 & 1 & -1 & 2 \\
2 & 2 & -3 & 1 \\
-1 & -1 & 0 & -5
\end{array}\right)
$$

